skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kendall, Wesley_Y"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present a machine learning method for detecting and staging cervical dysplastic tissue using light scattering data based on a convolutional neural network (CNN) architecture. Depth-resolved angular scattering measurements from two clinical trials were used to generate independent training and validation sets as input of our model. We report 90.3% sensitivity, 85.7% specificity, and 87.5% accuracy in classifying cervical dysplasia, showing the uniformity of classification of a/LCI scans across different instruments. Further, our deep learning approach significantly improved processing speeds over the traditional Mie theory inverse light scattering analysis (ILSA) method, with a hundredfold reduction in processing time, offering a promising approach for a/LCI in the clinic for assessing cervical dysplasia. 
    more » « less